我要申请bbin账号 这个数字几乎所有实验室都在用,却让科学界陷入危机

更新:2020-01-11 17:12:15浏览:3690

简介:近100年来,几乎所有科学家在分析实验数据时,都会用到p值这个工具:只有p小于0.05,才意味着实验结果具有统计显著性,才能在学术期刊上正式发表。而正是这样的缺陷,让整个科学界都处于危机中。这个标准支持了大多数已发表的科学结论,违反这一标准的论文很难发表,而且也很难得到学术机构的资助。在争议声中,实验经济学、生物医学研究,特别是心理学被卷入了一场科学实验可重复性的危机之中。

我要申请bbin账号 这个数字几乎所有实验室都在用,却让科学界陷入危机

我要申请bbin账号,近100年来,几乎所有科学家在分析实验数据时,都会用到p值这个工具:只有p小于0.05,才意味着实验结果具有统计显著性,才能在学术期刊上正式发表。但是,统计显著性的概念以及支撑它的p值具有相当大的局限性。而正是这样的缺陷,让整个科学界都处于危机中。

这篇选自《环球科学》11月新刊的文章,为我们讲述了P值危机。

1925 年,英国遗传学家兼统计学家罗纳德·菲舍尔(Ronald Fisher)出版了《研究者的统计方法》(Statistical Methods for Research Workers)一书。这本书的书名在当时看起来并不会“畅销”,但实际上这本书却取得了巨大的成功,而且还使菲舍尔成为现代统计学之父。在这本书中,他着眼于研究人员如何将统计检验理论应用于实际数据,以便基于数据得出他们所发现的结论。当使用某个统计假设来做检验时,该检验能够概述数据与其假设的模型之间的兼容性,并生成一个p值。

菲舍尔建议,作为一个方便的指南,研究人员可以考虑将p值设为0.05。对于这一点,他专门论述道:“在判断某个偏差是否应该被认为是显著的时候,将这一阈值作为判断标准是很方便的。”他还建议,p值低于该阈值的结论是可靠的,因此不要把时间花在大于该阈值的统计结论上。因此,菲舍尔的这一建议诞生了p小于0.05等价于所谓的统计显著性,这成了“显著”的数学定义。

菲舍尔的遗憾

近一个世纪之后,在科学研究的许多领域,p值小于0.05被认为是确定实验数据可靠性的金标准。这个标准支持了大多数已发表的科学结论,违反这一标准的论文很难发表,而且也很难得到学术机构的资助。然而,即使是菲舍尔也明白,统计显著性的概念以及支撑它的p值具有相当大的局限性。

P值经常被曲解,统计的显著性不等于实际的显著性。此外,为了让数据更漂亮,很多研究人员有意无意地将p值向上或向下调整。美国加利福尼亚大学洛杉矶分校的名誉教授、统计学家和流行病学家桑德·格林兰德(Sander Greenland)说:“你可以用统计学方法来证明任何事情。”他是呼吁统计学改革的科学家之一。只依靠达到统计显著性的研究经常会得出不准确的科学结论,这种判断标准可以把真的事情判断为假的,也可以把假的事情判断成真的。在菲舍尔退休,移居澳大利亚后,有人问他,在漫长的职业生涯中他是否有任何遗憾,他明确回答道:“当初不该提出0.05。”

在过去十年里,关于统计重要性的争论以不寻常的强度爆发。援引两篇论文的观点:一篇文章称统计分析的薄弱基础导致了“科学最肮脏的秘密”;另一篇则提到,在检验某些假设时,存在“许多深层次的缺陷”。在争议声中,实验经济学、生物医学研究,特别是心理学被卷入了一场科学实验可重复性的危机之中。在这场危机中,科学家发现相当一部分研究是不可重复的。

一个臭名昭著的例子是“姿态能量”的概念,某篇论文声称,自信的肢体语言不仅会改变你的态度,还会改变你的激素分泌,后来这篇文章还被作者自我否定了。美国哥伦比亚大学的统计学家安德鲁·格尔曼(Andrew Gelman)在他博客写道:“一篇可疑的关于气候经济学影响力的论文,多年之后发表了勘误声明,最终被修正的错误结论几乎与原论文的数据点一样多,这可不是开玩笑!但勘误声明中这些更正都不足以让作者改变结论。” 格尔曼还说道:“嘿,只做理论上的工作就可以了,但不需要用数据分散我们的注意力。”

推荐新闻

热门新闻

最新新闻

© Copyright 2018-2019 jacobhuff.com 城西信息门户网 Inc. All Rights Reserved.